SELECTED SYMBOLS, FORMULAS AND CONVERSION FACTORS

Symbols

Symbol	Description	Preferred Units
F	Force	N
L	Length	mm, cm or m
A	Area	mm ² , cm ² or m ²
S	Engineering stress	MPa
e	Engineering strain	-
F	True stress	MPa
,	True strain	-
<u>t</u>	Time	S

Conversion Factors

Description	Conversion Factors
Mass	1 kg = 2.207 lbs
Force	$1 \text{ N} = 10^6 \text{ dynes} = 0.2248 \text{ lbf}$
Length	$1 \text{ in} = 25.4 \text{ mm} = 2.54 \text{ cm} = 2.54 \text{x} 10^{-2} \text{ m}$
Area	$1 \text{ in}^2 = 645.16 \text{ mm}^2 = 6.4516 \text{ cm}^2 = 6.4516 \text{x} 10^{-4} \text{ m}^2$
Stress, pressure	$1 \text{ MPa} = 1 \text{ MN/m}^2 = 145 \text{ psi}$
Energy, work	$1 \text{ J} = 10^7 \text{ ergs} = 6.242 \times 10^{11} \text{ eV} = 0.239 \text{ cal}$

Stress and Strain

	Nominal	True
Stress	$s = \frac{F}{A_0}$	$\sigma = \frac{F}{A}$
Strain	$e = \frac{\Delta L}{L_0}$	$ \epsilon = \int_{L_0}^{L_f} \frac{dL}{L} = \ln \left(\frac{L_f}{L_0} \right) $
	$e = -\frac{\Delta A}{A_0}$	$\epsilon = \ln \left(\frac{A_o}{A_f} \right)$ (See note 1)
Strain Rate	$\dot{e} = \frac{de}{dt} = \frac{dL}{L_0 dt}$	$\dot{\mathbf{\epsilon}} = \frac{d\mathbf{\epsilon}}{dt}$

Note 1: Constant volume is assumed $(A_0L_0 = A_fL_f)$.

The true stress and strain can be written in terms of the nominal stress and strain, as long as the specimen has not started necking, by the equations

$$\sigma = s(e+1)$$

and

$$\epsilon = \ln(e+1)$$

Elastic Moduli

Modulus	Equation
Young's Modulus	$E,Y=\frac{d\sigma}{d\epsilon}$
Poisson's Ratio	$v = -\frac{\epsilon_x}{\epsilon_z}$, For constant volume $v = 0.5$
Shear Modulus	$G = \frac{d\tau}{d\gamma} = Y \frac{1}{2(1+\nu)} = K \frac{3(1-2\nu)}{2(1+\nu)}$
Bulk Modulus	$K = \frac{d\sigma_{hyd}}{\frac{dV}{V}} = G\frac{2(1+v)}{3(1-2v)}$
	r